Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A tetragonal polymorph of caesium hydroxide monohydrate, $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, from X-ray powder data

Radovan Černý,* Vincent Favre-Nicolint and Bernard Bertheville

Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, $\mathrm{CH}-1211$ Genève 4 , Switzerland
Correspondence e-mail: radovan.cerny@cryst.unige.ch

Received 17 December 2001
Accepted 21 December 2001
Online 13 February 2002

Tetragonal caesium hydroxide monohydrate, $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, a clathrate hydrate, is a polymorph of three known hexagonal or pseudo-hexagonal modifications. It was obtained as a byproduct in a high-pressure experiment. Whether it is a highpressure polymorph, however, remains to be verified. The Cs atoms are situated in cavities of the form of a bicapped pentagonal prism, within an infinite three-dimensional hydrogen-bonded oxygen framework that is locally identical to layers found in the hexagonal modifications. The Cs atom and one of the two H atoms are at sites with $\overline{4} m 2$ symmetry, the O atom has mm site symmetry and the second H atom has $2 / m$ symmetry.

Comment

Caesium hydroxide monohydrate, $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}\left(\right.$ or $\left.\mathrm{CsH}_{3} \mathrm{O}_{2}\right)$, is known to crystallize in three different hexagonal or pseudohexagonal modifications (Jacobs et al., 1982). Below 233 K the symmetry is monoclinic, between 233 and 340 K it is trigonal, and above 340 K the structure becomes truly hexagonal, at least so far as the positions of the Cs and O atoms are concerned (space group $P 6 / \mathrm{mmm}, a=4.574$ and $c=4.440 \AA$, Cs at $1 a$ and O at $2 d$). The O atoms form (001) layers with hexagonal symmetry, each O atom being connected to three neighbouring O atoms via hydrogen bonds. It has been shown by incoherent neutron scattering (Stahn et al., 1983) that at 402 K the H atoms are dynamically disordered in a doublewell potential between adjacent O atoms, indicating that at this temperature it is impossible to distinguish between OH^{-} ions and water molecules, and the structure can thus be rationalized in terms of (001) two-dimensional $\mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ions separated by (001) layers of Cs^{+}ions.

The Rietveld refinement of the synchrotron data (Fig. 1) measured on the present tetragonal polymorph shows that the

[^0]same triangular coordination of O atoms as in the hexagonal polymorph can be found locally in the tetragonal phase, as bands running along the a axis at $z \sim \frac{1}{4}$ and $\frac{3}{4}$, and along the b axis at $z \sim 0$ and $\frac{1}{2}$ (Fig. 2). These bands form an infinite three-

Figure 1
Observed (circles) and calculated (solid line) intensities for $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The three rows of tick-marks indicate, from top to bottom, the positions of the Bragg peaks of the main $\left(\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ and impurity (CsH and CsOH) phases. The difference pattern appears below.

Figure 2
The structure of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ viewed approximately along the a axis. The positions of the H atoms (small spheres) were predicted from bondvalence analysis. Cs atoms are denoted by large spheres and O atoms by mid-sized spheres.

inorganic compounds

dimensional oxygen framework that is locally identical to the layers found in the hexagonal modification.

No H atoms were identified during the refinement, so the concept of bond valences (Brown \& Wu, 1976) was used to locate the hydrogen bonds. The data of Brese \& O'Keeffe (1991) were used to calculate the bond valences for all non-H atoms. The bond valences sum to 0.94 for Cs and to 0.47 for O , indicating that each O atom participates in three hydrogen bonds. Neutron diffraction on a deuterated sample would be necessary to localize the H atoms precisely and to determine whether, at room temperature, they are fully ordered (which would lead to a decrease of the symmetry) or disordered, as in the hexagonal polymorph.

The Cs atoms are situated in the cavities of the oxygen framework, taking the form of a bicapped pentagonal prism. This form can be derived from a hexagonal prism (the Cs coordination observed in the hexagonal modification) by a 90° rotation of half of the hexagonal prism.

The tetragonal polymorph of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ is a clathrate hydrate. The calculated density of the tetragonal modification of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ at ambient pressure and 293 K is $3.79 \mathrm{Mg} \mathrm{m}{ }^{-3}$, which is higher than the density of the hexagonal polymorph, which was found to be $3.51 \mathrm{Mg} \mathrm{m}^{-3}$ at the same temperature and pressure.

Experimental

The tetragonal modification of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was initially obtained as a by-product during the high-pressure synthesis of caesium-based ternary metal hydrides. In the first step, binary caesium hydride powder was synthesized by direct hydrogenation of a metallic caesium ingot (STREM, 99.9\%) at 700 K and 80 bar ($1 \mathrm{bar}=10^{5} \mathrm{~Pa}$) hydrogen pressure for 15 d in an autoclave. In the second step, caesium-based metal hydrides were synthesized by heating mixtures of CsH and the corresponding metal to 800 K in a multi-anvil press at 30 kbar pressure in air. The reaction products contained CsOH and tetragonal $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ as impurities. The same experiments were performed without the metal powders, and the reaction product contained $\mathrm{CsH}, \mathrm{CsOH}$ and tetragonal $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The product was white, pyrophoric and extremely sensitive to air and moisture.

Crystal data

$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$

$M_{r}=167.93$
Tetragonal, $I 4_{1} /$ amd
$a=4.38088$ (4) \AA
$c=15.46525(17) \AA$
$V=296.811(5) \AA^{3}$
$Z=4$
$D_{x}=3.785$ (2) $\mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation
$\lambda=0.48562 \mathrm{~A}$

Cell parameters from 109
reflections
$\theta=3.3-25^{\circ}$
$\mu=24.21 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Specimen shape: cylinder
$50 \times 0.4 \times 0.4 \mathrm{~mm}$
Specimen prepared at 3000000 kPa Specimen prepared at 800 K
Particle morphology: plate-like, white

Table 1
Selected interatomic distances (\AA).

$\mathrm{Cs}-\mathrm{O}^{\mathrm{i}}$	$3.341(3)$	$\mathrm{O}-\mathrm{O}^{\mathrm{ii}}$	$2.505(11)$
$\mathrm{Cs}-\mathrm{O}^{\mathrm{ii}}$	$3.410(6)$	$\mathrm{O}-\mathrm{O}^{\mathrm{iii}}$	$2.579(6)$
Symmetry codes: (i) $\frac{1}{2}-x, y, \frac{1}{2}-z ;$ (ii) $\frac{1}{4}-y, \frac{1}{4}-x, \frac{3}{4}-z ;$ (iii) $x,-y, 1-z$			

Data collection

Two-axis goniometer diffractometer SNBL at the ESRF Grenoble, France
Specimen mounting: glass capillary
Specimen mounted in transmission mode
$2 \theta_{\text {min }}=6.012,2 \theta_{\text {max }}=36.488^{\circ}$
Increment in $2 \theta=0.002^{\circ}$

Refinement

$R_{p}=0.125$
Profile function: pseudo-Voigt
$R_{\text {wp }}=0.133$
$R_{\text {exp }}=0.059$
$S=2.28$
$2 \theta_{\text {min }}=6.012,2 \theta_{\max }=36.488^{\circ}$
Increment in $2 \theta=0.002^{\circ}$
Wavelength of incident radiation: 0.48562 A

109 reflections
14 parameters
H -atom parameters not refined $w=1 / Y_{i}$
$(\Delta / \sigma)_{\text {max }}=0.01$
Preferred orientation correction: no

Data collection: SNBL data collection software; cell refinement: FULLPROF98 (Rodríguez-Carvajal, 1998); data reduction: FULLPROF98; program(s) used to solve structure: FOX (Favre-Nicolin \& Černý, 2001); program(s) used to refine structure: FULLPROF98; molecular graphics: ATOMS (Dowty, 1993); software used to prepare material for publication: WinPLOTR (Roisnel \& RodríguezCarvajal, 1998) and ATOMS.

This work was supported by the Swiss National Science Foundation through grant No. 2100-053847.98. The authors wish to thank the staff of the Swiss-Norwegian Beamline (BM1) at the ESRF Grenoble for help with the diffraction experiment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1352). Services for accessing these data are described at the back of the journal.

References

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
Dowty, E. (1993). ATOMS. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Favre-Nicolin, V. \& Černý, R. (2001). University of Geneva, Switzerland. Web address: http://objcryst.sourceforge.net/.
Jacobs, H., Harbrecht, B., Mueller, P. \& Bronger, W. (1982). Z. Anorg. Allg. Chem. 491, 154-162.
Rodríguez-Carvajal, J. (1998). FULLPROF98. Version 3.5d. Laboratoire Léon Brillouin (CEA-CNRS), France.
Roisnel, T. \& Rodríguez-Carvajal, J. (1998). WinPLOTR. Laboratoire Léon Brillouin (CEA-CNRS), France.
Stahn, M., Lechner, R. E., Dachs, H. \& Jacobs, H. E. (1983). J. Phys. C Solid State Phys. 16, 5073-5082.

[^0]: \dagger Current address: ESRF, Grenoble, France.

